Images of SMC Reseaich 1996

Logic Programming

K.R. Apt

1. INTRODUCTION

Logic programming (in short LP) is a simple, yet powerful formalism suit-
able for programming and for knowledge representation. It was introduced
in 1974 by R. Kowalskl. LP grew out of an earlier work on automatic theo-
rem proving based on the resolution method. The major difference is that
LP can be used not only for proving but also for computing. In fact, LP of-
fers a new programming paradigm, which was originally realized in Prolog,
a programming language introduced in early seventies by a group led by A.
Colmerauer.

After an initially slow start LP grew twenty years later to an impressive
field in computer science, in which by now a couple of thousand articles have
been published. Recently, The Journal of Logic Programmaing celebrated its
tenth year anniversary. A couple of annual conferences are nowadays taking
place and interest in the subject does not seem to be waning. On the
contrary. The logic programming paradigm has inspired the design of new
programming languages, like CHIP and Godel, which have been successfully
used to tackle various computationally complex problems. These languages
attempt to overcome a number of Prolog deficiencies, visibly awkward use
of arithmetic, ad hoc control features and lack of types.

One of the reasons for this interest in LP is 1ts simplicity combined with
versatility. LP strongly relies on mathematical logic which developed its own
methods and techniques and can provide a rigorous mathematical frame-

367

368

K.R. APT

work for LP. In many cases these methods have to be fine tuned and ap-
propriately modified to be usetul in LP. It should be added here that some
basic concepts of LP, like unification, were developed earlier by computer
scientists working in the field of automated reasoning.

Efficient nnplementation of Prolog and its extensions, development of
appropriate programming methodology and techniques, that aim at better
understanding of the logic programming paradigm, and finally design of var-
10us successors and/or improvements of Prolog turned out to be an exciting
and highly non-trivial field calling for new solutions and fresh insights.

Prolog was originally designed as a programming language for natural
language processing. But it soon turned out that other natural applica-
tions for the logic programming paradigm exist. Current applications of
LP mvolve such diverse areas as molecular biology, design of VLSI systems,

the fact that knowledge about certain domains can be conveniently writ-
ten down as facts and rules which directly translate into executable logic
prograis.

T'hese three aspects of LP—theory, programming and applications—-grew
together and often influenced each other. This versatility of LP makes it an
attractive subject to study and an interesting field to work in.

2. DECLARATIVE PROGRAMMING

LP allows us to write programs and compute using them. There are two
natural interpretations of a logic program. The first one, called a declara-
tive wnterpretation, 18 concerned with the question what is being computed,
whereas the second one, called a procedural interpretation, explains how the
computation takes place. Informally, we can say that declarative interpre-
tation 1s concerned with the meaning, whereas procedural interpretation is
concerned with the method.

These two interpretations are closely related to each other. The first
Interpretation helps us to better understand the second and is a major rea-
son why LP is an attractive formalism for programming. The fact that
when designing a logic program one can rely on its declarative interpreta-
tion explains why LP supports declarative programmaing. Loosely speaking,
declarative programming can be described as follows. Specifications, when
written in an appropriate format, can be used as a program. Then the
desired conclusions follow logically from the program. To compute these
conclusions some computation mechanism is available.

Now ‘thinking’ declaratively is in general much easier than ‘thinking’ pro-
cedurally. So declarative programs are often simpler to understand, develop
and modify. In fact, in some situations the specification of a problem in the
appropriate format forms already the algorithmic solution to the problem.
In other words, declarative programming makes it possible to write exe-

LG PROGRAMIAING

cutable specifications. It should be added however, that in practice the
programs obtained in this way are often inefficient, so this approach to
programming has to be coupled with appropriate use of program transfor-
mations and various optimization techniques.

This dual interpretation of logic programs also accounts for the double use
of LP-—as a formalisim for programming and for knowledge representation,
and explains the nnportance of LP in the field of artificial intelligence.

3. DECLARATIVE PROGRAMMING IN PROLOG
Prolog differs from LP in several small, but important aspects. In particular,
both the selection rule (‘choose left first’) and the search strategy (depth
first search) are fixed.

To illustrate the declarative programming in Prolog we now present three
examples. These were on purpose chosen short and simple.

FExzample 1: a sequence problem
Consider the following problem: arrange three 1's, three 2’s, ..., three 9’s
in sequence so that for all ¢ € [1,9] there are exactly { numbers between
successive occurrences of 7. Figure 1 shows the programn that solves this
problem in Prolog and the output showing all 6 solutions.

We see that the Prolog solution to the problem is an almost literal for-
malization of its formulation.

Fzxzample 2: typing of lambda terms

Consider the typed lambda calculus and Curry’s system of type assignment
(see H.B. Curry and R. Feys [4]). It involves statements of the form x : ¢
which should be read as ‘term a has type t’. Finite sequences of such state-
ments often called environments are denoted below by E. The following
three rules allow us to assign types to lambda terms:

r:tel 369
Er+ax:t

EFErm:s—t, EFn:s
EF(mmn):t

EF,x:skHm:t
Etr (Ar.m):s—t

These rules directly translate into the Prolog program given in figure 2.
For the sake of this program lambda terms are encoded as first-order terms.
To this end the unary function symbol var and two binary function symbols,
lambda and apply are used. The lambda term x is translated to the term

K K. AP

rrrrrrr

By - et b o s A gk E b4 g ki P b o e bbb P bt Frid 8 H b A, e i sttt o M S hresih

Arrange three 1's, three 2's, ... three 9's in sequence so that for all i € 11, 9]
there are exactly ¢ numbers between successive oceurrences of .

% sequence(Xs) — Xsis a list of 27 elements.
sequence ([

-—:w:«-:“:--:m:w:Maw:-w;w:w:-:-a---:-—-~:-—-:-—-:-—-:-—~:m:~—aw:--:*:w:w]) *

% question(Ss) «— Ssis a list of 27 elements forming the desired sequence.
question(Ss)

sequence(Ss),

sublist([1,_,1,_,1], Ss),

sublist([2,_,.,2,_.,_,2], Ss),

sublist([3,_,_,.,3,_,.,-,3], Ss),

sublist([4, ,_,_,_,4,_,_,_,_,4], Ss),

sublist([6, ,_,_,_-,-,_,6,.,_,_,_,_,..,6], Ss),

sublist (L7, ,, , , , -7,y -ssey-y-y_,T7]1, Ss),
sublist([8, , ,_ , ., ,,-,8,, s ys_y_,_,_.8], S8),
Sublist([9,__.,_..,_,,_,__,_,_..,_,__,9,_.,__,_,.._,_.,.,,4_,.._,.__,9], Ss).

/# append(Xs, Ys, Zs) <« Zs is the result of concatenating the lists Xs and Ys.
append([], Ys, Ys).

append([X | Xs], ¥Ys, [X | Zs]) — append(Xs, Ys, Zs).

%~ sublist(Xs, Ys) « Xs is a sublist of the list Ys.
sublist(Xs, Ys) <« append(_, Zs, Ys), append(Xs, _, Zs).

| ?- question(Ss).

Ss = [1,9,1,2,1,8,2,4,6,2,7,9,4,5,8,6,3,4,7,5,3,9,6,8,3,5,7];
Ss = [1,8,1,9,1,5,2,6,7,2,8,5,2,9,6,4,7,5,3,8,4,6,3,9,7,4,3];
Ss = [1,9,1,6,1,8,2,5,7,2,6,9,2,5,8,4,7,6,3,5,4,9,3,8,7,4,3];
370 Ss = [3,4,7,8,3,9,4,5,3,6,7,4,8,5,2,9,6,2,7,5,2,8,1,6,1,9,1];
Ss = [3,4,7,9,3,6,4,8,3,5,7,4,6,9,2,5,8,2,7,6,2,5,1,9,1,8,1];
Ss = [,5,8,,9,3,,74,,8,5,9,7,2,6,4,,81,,191]; _

Figure 1. The sequence problem.

Lo T :3 S L BooA
l ol }‘ SRS RV AT TENT | S L

curry(E, var(X), T) +«— member([X, T], E).

curry(E, apply(M, N), T) <« curry(E, M, S—T),

r curry(E, N, S).

curry(E, lambda(X, M), S—T) — curry([[X, S] | E], M, T).

member (X, [Y | Xs]) « X # Y, member (X, Xs).
member (X, [X | Xs]).

Figure 2. The type assignment program.

var (x), the lambda term ()n 1) to the term apply(m, n), and the lambda
term Ax.m to the term lambda(x, m). The subtle point is that according
to Prolog convention, lower case letters stand for constants. so var(x) 1s a
eround term (l.e. a term without variables), etc. For example, the lambda
term Ar. (& @) translates to lambda(x, apply(var(x), var(x))).

Now, the program in figure 2 can be used to compute a tvpe assignment
to a lambda term, if such an assignment exists, and to report a failure it
such an assignment does not exist. To this end, given a lambda termm s, 1t
sufhices to use the query curry(l], t, T), where t is the translation of s
to a first-order term.

The problem of computing a type assignment for lambda terms was posed
and solved by Curry [4]. It is considered to be an advanced topic in the
theory ot lambda calculus and the foundations of functional programming.
The solution in Prolog given in figure 2 is completely elementary.

Erample 3: temporal reasoning
In [5] S. Hanks and D. McDermott discussed a simple problem in temporal
reasoning, a branch of non-monotonic reasoning. It became known in the
literature as the “Yale Shooting Problem’ . Hanks and McDermott’s interest
in this problem arose from the fact that apparently all theories about non-
monotonic reasoning, when used to formalize this problem, led to too weak
conclusions. The problem has been extensively discussed in the literature
and several solutions to it have been proposed. In Hanks and McDermott
5] some of these solutions are discussed and critically evaluated.

We present here a particularly simple solution to the above problem by
means of logic programming. First, let us explain the problem. Consider a

ogun that can be either loaded or unloaded. The following statements are
stipulated:

1. At some specific situation s, the person is alive.

2. The gun becomes loaded any time a load event happens.

371

K. K. APT

holds(alive, sg),
Vs holds(loaded, results(load, s)),
Vs (holds(loaded, s) — ab(alive, shoot, s) A holds(dead, result(shoot, s)))
VfVeVs ((holds(f,s) N —ab(f,e,s)) — holds(f,result(e, s))).

Figure 3. The Yale Shooting Problem: the original formulation.

3. Any time the person is shot with a loaded gun, he becomes dead.
Moreover, the fact of staying alive is abnormal with respect to the
event of being shot with a loaded gun.

4. Facts which are not abnormal with respect to an event remain true.

To tormalize these statements Hanks and McDermott [5] used so-called
situation calculus in which one distinguishes three entities: facts, events
and situations, denoted respectively by the letters f, e, s, and the function
result such that for an event e and a situation s the term result(e, s) denotes
the situation resulting from the occurrence of e in s. These four statements
lead to the four formulas given in figure 3.

The problem was to find a way of interpreting these formulas so that
statements like

holds(dead, result(shoot, result(wait, result(load, sy))))

could be proved. Here wait is a new event whose occurrence is supposed to
have no effect on the truth of the considered facts.

The solution to the Yale Shooting Problem in Prolog is completely straight-
forward and shown in figure 4. This program is an almost literal translation
of the above formulas to Prolog syntax. (To enhance readability we use in

379 1t the list notation [e | s] of Prolog instead of result(e, s) and denote the
initial situation by the empty list [].)

In contrast to the solutions in other formalisms, the Prolog solution can

holds(alive, []).
‘holds(loaded, [load | Xs]).

‘holds(dead, [shoot | Xs]) <« holds(loaded, Xs).

‘ab(alive, shoot, Xs) + holds(loaded, Xs). ,
‘holds(Xf, [Xe | Xs]) + =— ab(Xf, Xe, Xs), holds(Xf, Xs).

Figure 4. A program solving the Yale Shooting Problem.

LOGIC PROGRAMMING

be used not only to model the problem but also to compute answers to the
relevant queries. For example, we have

| ?- holds(dead, [shoot, wait, load]).
yes
| ?- holds(dead, [wait, load]).

no

Also, using the theory of logic programming, it is possible to provide a nat-
ural semantics to this program in the form of a unique model, which admits
several natural characterizations and allows us to predict the correct an-
swers to the queries. In |6] E. Marchiori studied an extension of Prolog with
so-called constructive negation. This allowed her to deal with more com-
plex queries which Prolog does not handle correctly, like holds(alive, [X,
Y]). By means of constructive negation it yields two answers X # shoot
and Y # load, which is justified from the semantic point of view.

4. PROGRAM VERIFICATION AND PROLOG

The usual way of explaining that a program is correct is that it meets
1ts specifications. This statement has a clear intention but is somewhat
imprecise so we shall be more specific in a moment. Correctness of programs
1s 1mportant, both from the point of view of software reliability as from the
point of view of software development. Program verification is the formal
activity whose aim 1S to ensure correctness of programs. It has a history
spanning a quarter of the century.

In the case of logic programming the declarative interpretation reduces
the issue of program correctness to an analysis of the program from the
logical point of view. In this analysis the computation mechanism can be
completely disregarded. This is an important reduction which significantly
simplifies the task of program verification.

In the case of Prolog it is natural to base the program verification on the
theory of logic programming. Because of the differences between Prolog and
logic programming this theory has to be appropriately modified and revised.
Moreover, due to several ‘non-declarative’ features of Prolog, a declarative
interpretation of Prolog programs is, to say the least, problematic. To cope
with this problem we determined in our studies a large subset of Prolog and
showed that for programs written in this subset it is possible to reason about
their correctness by a combination of syntactic analysis and declarative
Interpretation.

In our approach we dealt with various program properties which are cru-
cial for ensuring proper functioning of these programs. In particular, we

373

374

K.R. APT

considered:

e lermination.
This means that the program under consideration should terminate
for the appropriate queries.

e PPartial correctness.
This means that the program under consideration should deliver cor-
rect answer for the appropriate queries.

o Absence of run-time errors.

In the case of Prolog these are:

— absence of the so-called occur-check problem (explained below),

— absence of errors in presence of arithmetic expressions.

T'he resulting framework is simple to use and readily applicable to most of
the well-known Prolog programs. Moreover, several aspects of the proposed
methods can be automated.

4.1. Termination
As an example we explain here the approach to termination of simple Prolog
programs due to K.R. Apt and D. Pedreschi [1].

We need some introductory notions. We assume here that all programs
and querles are written in a fixed, "universal’, language defined by, say, a
Prolog manual.

Definition

o A level mapping is a function | | from ground atoms (i.e. atomic
formulas with no variables) to natural numbers.

o An atom A is bounded w.r.t. | |, if | | is bounded on the set of all
eround instances of A.

e A clause ¢ is acceptable w.r.t. || and an interpretation I, if

— I = ¢ (I is a model of ¢),

— for all ground instances A — A, B,B of ¢ such that I = A
Al > |BJ.

e A program is acceptable w.r.t. || and I, if every clause of it is.
Then the following result holds.

Theorem. Suppose that

LI PROCRARMPAINCG

o [’ is acceptable w.r.t. || and 1.

e A is bounded w.r.t. ||.

Then all Prolog computations of A w.r.t. /2 are finite.
Let now 1s(.) (for lLstsize) be a function from ground terms to natural
numnbers defined by induction as follows:

1s(|o|rs]) = 1s(as) + 1,
Is(f(wy,..oay))= 0if f# [.].].

To see a simple use of the above theorem consider the program of figure
1. It 18 easily seen to be acceptable w.r.t. the level mapping defined by:

question(xs)| = 50,
sequence(xs)| = 0,
sublist(xs.ys)| = 1s(xs)+ 1ls(ys)+ 1,
lappend(xs,ys,zs)| = min(ls(xs), 1ls(zs)),

and any model / of it such that for a ground term s

I = seq(s) iff s is a list of 27 elements.

Note that question(Ss) is bounded w.r.t. | |, so we conclude that all
Prolog computations of question(Ss) are finite.

A natural modification of this approach to programs that use negation
can be used to deal with termination of the IProlog programs given in figures
2 and 4.

4.2. Occur-check problemn

The occur-check is a special test used in the unification algorithm, a corner-
stone ot Prolog’s computation mechanism. In most Prolog implementations
it 18 omitted for efficiency reasons. This omission affects the unification
algorithm and introduces a possibility of divergence. This is obviously an
undesired situation.

In our work (see Apt and A. Pellegrini [2|) we provided easy to check
syntactic conditions which can be verified mechanically and which nnply
that the occur-check can be safely omitted for a given program and query.
For example, the programs given in figures 1 and 4 are sate from the occur-
check problem for the queries used.

In contrast, the program given in figure 2 leads to problems. In partic-
ular, for the query curry([], lambda(x, apply(var(x), var(x))), T)
the omission of the occur-check causes divergence. In our studies we showed
how this problem can be taken care of by means of a simmple program trans-
formation which inserts calls of the built-in unification predicate (with the

375

376

K.R. APT

occur-check test) into the program text. In the case of the program given
in figure 2 it suffices to modify the second and the last clause as follows:

curry(E, apply(M, N), T) «— curry(E, M, S—T),
curry(E, N, Z),
7 =,. S.

member(X, [Z | Xs]) — Z =, X.

Here ‘=,." is the unification predicate with the occur-check test. The re-
sulting program can then be used for the queries of interest. For example,
in the case of the term Ax. (xr r) we use the query curry([], lambda(x,
apply(var(x), var(x))), T). This query finitely fails:

| ?- curry([], lambda(x, apply(var(x), var(x))), T)

INO

which confirms that the original lambda term has no type assignment.

4.3. Delay declarations
One of the striking features of logic programs is that they can be easily
parallelized. For example, by adding to the program of figure 2 the so-
called delay declaration:

DELAY append(., _, Z) UNTIL nonvar(Z).

we obtain a program with a large degree of parallelism. The above decla-
ration defers the selection of the append-atoms until their last argument is
not a variable. By default, no restrictions are imposed on the selection of
other atoms.

50 the use of delay declarations replaces the Prolog selection rule by a
non-deterministic selection rule which dynamically determines which atoms
can be selected. In the executions of the resulting programs dynamic net-
works of processes are created that communicate asynchronously by means
of multiparty channels. In the case of the program of figure 1 up to nineteen
processes can be created during its executions.

The delay declarations allow us to impose a synchronization on the ac-
tions of a logic program in a concise way. Programs augmented by the
delay declarations can be translated in a straightforward way into other
concurrent languages based on the logic programming paradigm.

In our recent publications, we showed how correctness of such parallel
programs can be established by a natural modification of the methods orig-
inally developed for Prolog programs.

LOGIC PROGRAMMING

rel sequence: array [1..27] of [1..9].
sequence(A) «— VI € [1..9] 47 € [1..25-21]
(A[J] = I, A[J+I+1] = I, A[J+2I+2] = 1I)).

Figure 5. A simple solution to the problem from figure 1.

4.4. Language exrtensions

In our recent work [3] we studied language extensions which involve iteration
and arrays. Iteration is implemented by means ot bounded quantification.
We noticed that the use of iteration within the logic programming paradigm
often leads to substantially simpler programs which are closer to specifica-
tions and are guaranteed to terminate.

As an example consider the solution to the problem from figure 1 given
in figure 5. It is very close to the problem specification and much simpler
than the one given in figure 1. The range J € [1..25-2I] comes from the
requirement that the indices J, J+I+1, J+2I+2 should lie within [1..27].

REFERENCES
1. K. R. Apr, D. PEDRESCHI (1993). Reasoning about termination of
pure Prolog programs. Information and Computation 106(1), 109-157.

2. K. R. ApT, A. PELLEGRINI (1994). On the occur-check free Prolog
programs. ACM Toplas 16(3), 687-726.

3. K. R. Apt (1995). Arrays, bounded quantification and iteration in
logic and constraint logic programming. M. ALPUENTE FRASNEDO,
M. I. SESSA (eds.). 1995 Joint Conference on Declarative Programming
(GULP-PRODE ’95). University of Salerno, Italy, Invited Lecture, 19—
30.

4. H.B. Curry, R. FEYS (1958). Combinatory Logic, Volume I, Studies in
Logic and the Foundation of Mathematics, North-Holland, Amsterdam.

5. S. HANKS, D. MCcDERMOTT (1987). Nonmonotonic logic and temporal
projection. Artificial Intelligence 33, 379-412.

6. E. MARCHIORI (1995). On termination of general logic programs w.r.t.
constructive negation. The Journal of Logic Programming. Accepted for
publication.

377

